AMENDMENTS TO THE CLAIMS

The following listing of claims will replace all prior versions and listings of claims in the application.

LISTING OF CLAIMS

1. (currently amended) A liquid crystal display device for displaying a visible image by controlling an alignment of a liquid crystal disposed between a pair of substrates by imposing a drive voltage on the liquid crystal through at least one electrode, comprising:
 a driving integrated circuit (IC) mounted on one of the pair of substrates, the driving integrated circuit operable to supply the drive voltage to the at least one electrode; and
 a resistance element having an adjustable resistance value, disposed on at least one of the pair of substrates, and electrically connected to the driving IC, the resistance element having the same material as that of the at least one electrode and formed to a prescribed pattern, wherein the resistance value of said resistance element is capable of being set by partially removing the material pattern of the resistance element, wherein an input voltage for operating the driving IC is capable of being varied depending on the resistance value of the resistance element and the drive voltage is capable of being varied depending on the value of the input voltage.

2-3. (cancelled).

4. (currently amended) A liquid crystal display device according to claim 1, wherein said resistance element is formed by ITO (indium tin oxide).
5. (currently amended) A method of manufacturing a liquid crystal display device for displaying a visible image by controlling an alignment of a liquid crystal disposed between a pair of substrates by imposing a drive voltage on the liquid crystal through at least one electrode, wherein the method is comprised of the following steps of:

mounting a driving integrated circuit (IC) on at least one of the pair of substrates, the driving IC operable to supply the drive voltage to the at least one electrode;

forming a resistance element having an adjustable resistance value on at least one of the pair of substrates, the resistance element being electrically connected to the driving IC, the resistance element having the same material as that of the at least one electrode and formed to a prescribed pattern; and

partially removing the material pattern of the resistance element so as to adjust a the resistance value of the resistance element so as to adjust an input voltage for operating the driving IC, wherein the drive voltage is varied based on the value of the input voltage.

6-12. (cancelled)

13. (currently amended) A liquid crystal display device comprising:

a first substrate;

a second substrate opposite said first substrate;

a liquid crystal disposed between said first and second substrates;

a plurality of electrodes disposed on at least one of the substrates, wherein a drive voltage is imposed on the liquid crystal through at least one of the plurality of electrodes;
a driving integrated circuit (IC) mounted on at least one of the substrates and operable to supply the drive voltage to the at least one of the plurality of electrodes; and

a resistance element having an adjustable resistance value, disposed on one of said first and second substrates, and electrically connected to the driving IC, the resistance element having the same material as that of the at least one electrode and formed to a prescribed pattern, wherein the resistance value of said resistance element is capable of being set by partially removing the material pattern of the resistance element, wherein an input voltage for operating the driving IC is capable of being varied depending on the resistance value of the resistance element and the drive voltage is capable of being varied depending on the value of the input voltage.

14. (cancelled)

15. (previously presented) The liquid crystal display device of Claim 13 further comprising: a plurality of electrodes formed on said first and second substrates, said electrodes being formed of the same material as said resistance element.

16. (previously presented) The liquid crystal display device of Claim 13 wherein said adjustable resistance value of said resistance element is controlled by a pattern of said resistance element.

17. (previously presented) The liquid crystal display device of Claim 13 further comprising a seal formed between said first and second substrates.
18. (previously presented) The liquid crystal display device of Claim 17 further comprising a peripheral circuit disposed between said first and second substrates outboard of said seal.

19. (previously presented) The liquid crystal display device of Claim 18 further comprising a second seal formed between said first and second substrates outboard of said peripheral circuit.

20. (previously presented) The liquid crystal display device of Claim 18 wherein said peripheral circuit includes at least one of a resistance element and a capacitor.

21. (currently amended) A liquid crystal display device for displaying a visible image, comprising:

 a first substrate;
 a second substrate opposite said first substrate;
 a liquid crystal disposed between said first and second substrates;
 a plurality of electrodes disposed on at least one of the substrates, wherein a drive voltage is imposed on the liquid crystal through at least one of the plurality of electrodes;
 a driving integrated circuit (IC) mounted on one of the substrates and operable to supply the drive voltage to the at least one of the plurality of electrodes; and
 a resistance element having an adjustable resistance value, disposed on at least one of said first and second substrates, and electrically connected to the driving IC, the resistance element having the same material as that of the at least
one electrode and formed to a prescribed pattern, wherein the resistance value of said resistance element is capable of being set by partially removing the material pattern of the resistance element, wherein an input voltage for operating the driving IC is capable of being varied depending on the resistance value of the resistance element and the drive voltage is capable of being varied depending on the value of the input voltage, thereby changing the voltage applied to the liquid crystal.

22. (cancelled)

23. (previously presented) The liquid crystal display device of Claim 22 wherein said liquid crystal is connected by said plurality of electrodes to said liquid crystal driving IC.

24. (previously presented) The liquid crystal display device of Claim 21 wherein said resistance element connected to one or more input terminals of said liquid crystal driving IC and said plurality of electrodes connected to a plurality of output terminals of said liquid crystal driving IC.

25. (previously presented) The liquid crystal display device of Claim 21 wherein said adjustable resistance value of said resistance element is controlled by a pattern of said resistance element.

26. (previously presented) The liquid crystal display device of Claim 21 further comprising a seal formed between said first and second substrates.

27. (previously presented) A liquid crystal display device for displaying a visible image, comprising:

a first substrate;
a second substrate opposite said first substrate;
a liquid crystal disposed between said first and second substrates;
a liquid crystal driving integrated circuit (IC) mounted on one of the first
and second substrates and operable to impose voltage on said liquid crystal; and
a capacitor located between the first and second substrates, connected to
said liquid crystal driving IC for stabilizing the voltage imposed on said liquid
crystal.
28-29. (cancelled)
30. (previously presented) A liquid crystal display device for displaying a
visible image, comprising:
a first substrate;
a second substrate opposite said first substrate;
a liquid crystal disposed between said first and second substrates;
a liquid crystal driving integrated circuit (IC) mounted on one of the first
and second substrates and operable to impose voltage on said liquid crystal; and
a capacitor located between the first and second substrates, connected to
said liquid crystal driving IC for generating voltages imposed on the liquid crystal.
31. (currently amended) A display device comprising;
a substrate;
a driving IC, mounted on the substrate, for driving the display device; and
a resistance element disposed on the substrate and electrically connected
to the driving IC, the resistance element having the same material as that of the at least
one electrode and formed to a prescribed pattern, wherein a the resistance value of said
resistance element is capable of being set by partially removing the material pattern of
the resistance element, the resistance element being capable of changing its resistance
value, wherein a voltage for operating the IC is varied depending on the resistance
value of the resistance element.

32. (currently amended) A liquid crystal display device for displaying
a visible image by controlling an alignment of a liquid crystal disposed between a pair of
substrates by imposing a drive voltage on the liquid crystal through at least one
electrode, comprising:

 a driving integrated circuit (IC) mounted on one of the pair of substrates,
the driving integrated circuit operable to supply the drive voltage to the at least one
electrode; and

 a resistance element having an adjustable resistance value, disposed
between the pair of substrates and disposed on at least one of the pair of substrates,
and electrically connected to the driving IC, wherein an input voltage for operating the
driving IC is capable of being varied depending on the resistance value of the resistance
element and the drive voltage is capable of being varied depending on the value of the
input voltage.

33. (previously presented) A method of manufacturing a liquid crystal
display device for displaying a visible image by controlling an alignment of a liquid
crystal disposed between a pair of substrates by imposing a drive voltage on the liquid
crystal through at least one electrode, wherein the method is comprised of the following
steps of:
mounting a driving integrated circuit (IC) on at least one of the pair of substrates, the driving IC operable to supply the drive voltage to the at least one electrode;

disposing a resistance element having an adjustable resistance value on at least one of the pair of substrates, the resistance element being electrically connected to the driving IC, the resistance element disposed between the pair of substrates; and

adjusting the resistance value of the resistance element so as to adjust an input voltage for operating the driving IC, wherein the drive voltage is varied depending on the value of the input voltage.

34. (New) The liquid crystal display device of claim 1 wherein the resistance element having the same material as that of the at least one electrode and formed to a prescribed pattern.

35. (New) The liquid crystal display device of claim 5 wherein the resistance element having the same material as that of the at least one electrode and formed to a prescribed pattern.

36. (New) The liquid crystal display device of claim 13 wherein the resistance element having the same material as that of the at least one electrode and formed to a prescribed pattern.

37. (New) The liquid crystal display device of claim 21 wherein the resistance element having the same material as that of the at least one electrode and formed to a prescribed pattern.
38. (New) The liquid crystal display device of claim 31 wherein the resistance element having the same material as that of the at least one electrode and formed to a prescribed pattern.

39. (New) A liquid crystal display device for displaying a visible image comprising:
 a first substrate;
 a second substrate opposite the first substrate;
 a driving integrated circuit (IC) mounted on one of the first and second substrates and operable to impose a drive voltage on a liquid crystal;
 a resistance element disposed on one of the first and second substrates and electrically connected to the driving IC, the resistance value of the resistance element being capable of being set by partially removing material of the resistance element, the drive voltage imposed on the liquid crystal by the driving IC being set depending on the resistance value of the resistance element.